Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network
نویسندگان
چکیده
In this study, we introduce a novel denoising transformer-based neural network (DTNN) model for predicting the remaining useful life (RUL) of lithium-ion batteries. The proposed DTNN significantly outperforms traditional machine learning models and other deep architectures in terms accuracy reliability. Specifically, achieved an R2 value 0.991, mean absolute percentage error (MAPE) 0.632%, RUL 3.2, which are superior to such as Random Forest (RF), Decision Trees (DT), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Unit (GRU), Dual-LSTM, DeTransformer. These results highlight efficacy providing precise reliable predictions battery RUL, making it promising tool management systems various applications.
منابع مشابه
An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries
Prognostics is an emerging science of predicting the health condition of a system (or its components) based upon current and previous system states. A reliable predictor is very useful to a wide array of industries to predict the future states of the system such that the maintenance service could be scheduled in advance when needed. In this paper, an adaptive recurrent neural network (ARNN) is ...
متن کاملRemaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
Remaining useful life (RUL) prediction is central to the prognostics and health management (PHM) of lithium-ion batteries. This paper proposes a novel RUL prediction method for lithium-ion batteries based on the Wiener process with measurement error (WPME). First, we use the truncated normal distribution (TND) based modeling approach for the estimated degradation state and obtain an exact and c...
متن کاملRemaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimoda...
متن کاملApplication of Unscented Particle Filter in Remaining Useful Life Prediction of Lithium-ion Batteries
Accurate prediction of the remaining useful life of a faulty component is important to the health management of the system. It gives operators information about when the component should be replaced. This paper studied the remaining useful life prediction of the lithium-ion batteries. Some work has been done to solve this problem, but it still remains challengeable. Particle filter (PF) is a re...
متن کاملGear Remaining Useful Life Prediction Based on Grey Neural Network
The condition monitoring data of gears is asymmetric distributed, moreover, sampling is usually conducted discontinuously in practice. Thus makes it difficult to predict gear remaining useful life accurately considering the two reasons above. In this paper, a fusion method is proposed using Elman Neural Network to modify residual series of grey model since Elman Neural Network performs better o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2023
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en16176328